Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Lancet Microbe ; 4(7): e495-e505, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2295418

ABSTRACT

BACKGROUND: Although most children and adolescents have had a previous SARS-CoV-2 infection and many continue to receive COVID-19 vaccinations, studies of the effectiveness of hybrid immunity against reinfection with the omicron (B.1.1.529) variant are scarce. We aimed to examine the effectiveness of vaccination in convalescent children and adolescents against reinfection with the delta (B.1.617.2) variant and the BA.1 and BA.2 and BA.4 and BA.5 omicron subvariants. METHODS: This retrospective cohort study was devised to emulate a target randomised control trial using a retrospective dataset of anonymised health records of children (5-11 years old) and adolescents (12-16 years old) who were members of the Maccabi Healthcare Services, Israel. The design emulated 91 randomised trials by devising a series of multiple nested trials, compiling the results into a single dataset, and fitting Cox proportional hazards models to estimate adjusted hazard ratios (HRs) with 95% CIs of each measured outcome. The primary aim was to assess the protection from reinfection with the delta variant and the BA.1 and BA.2 and BA.4 and BA.5 omicron subvariants associated with hybrid immunity as a result of a previous SARS-CoV-2 infection followed by vaccination with the BNT162b2 (Pfizer-BioNTech) vaccine. FINDINGS: Data from between from March 1, 2020, to July 31, 2022, for 163 812 individuals (120 721 children [59 404 girls and 61 317 boys], median age 8·0 years [IQR 6·7 to 10·2]; and 43 091 adolescents [21 239 girls and 21 852 boys], median age 13·5 years [12·6 to 14·8]) were included in at least one trial. A single dose of the BNT162b2 vaccine in convalescent children and adolescents confers statistically significant protection against the delta variant (78% [95% CI 72 to 83] in adolescents and 64% [3 to 87] in children) and the omicron BA.1 and BA.2 subvariants (54% [50 to 57] in adolescents and 71% [67 to 73] in children) compared with children who had a previous infection but were unvaccinated. However, the vaccine was not found to confer statistically significant protection against the BA.4 and BA.5 omicron subvariants in adolescents (8% [-18 to 29]) and children (12% [-6 to 27]). INTERPRETATION: Decision makers in BA.4 and BA.5 dominant regions should re-examine whether convalescent individuals aged 5-16 years should receive the BNT162b2 vaccine to prevent future reinfection, especially in light of reports that show that most children and adolescents have already been infected with SARS-CoV-2. FUNDING: None.


Subject(s)
COVID-19 , Vaccines , Male , Female , Humans , Adolescent , Child , Child, Preschool , SARS-CoV-2/genetics , COVID-19/prevention & control , BNT162 Vaccine , Retrospective Studies , Reinfection/prevention & control , Adaptive Immunity
2.
Viruses ; 15(3)2023 03 20.
Article in English | MEDLINE | ID: covidwho-2277002

ABSTRACT

Recent studies have highlighted the underestimated importance of the cellular immune response after the emergence of variants of concern (VOCs) of SARS-CoV-2, and the significantly reduced neutralizing power of antibody titers in individuals with previous SARS-CoV-2 infection or vaccination. Our study included 303 participants who were tested at St. Catherine Specialty Hospital using the Quan-T-Cell SARS-CoV-2 in combination with the Quan-T-Cell ELISA (Euroimmun Medizinische Labordiagnostika, Lübeck, Germany) for the analysis of IFN-γ concentration, and with Anti-SARS-CoV-2 QuantiVac ELISA IgG (Euroimmun Medizinische Labordiagnostika, Lübeck, Germany) for the detection of human antibodies of the immunoglobulin class IgG against the S1 domain of the SARS-CoV-2 spike protein. The statistical analysis showed a significant difference in the concentration of IFN-γ between reinfected participants and those without infection (p = 0.012). Participants who were not infected or reinfected with SARS-CoV-2 after vaccination and/or previous SARS-CoV-2 infection had a significantly higher level of cellular immunity. Furthermore, in individuals without additional vaccination, those who experienced infection/reinfection had significantly lower levels of IFN-γ compared to uninfected participants (p = 0.016). Our findings suggest a long-lasting effect of cellular immunity, measured by IFN-γ concentrations, which plays a key role in preventing infections and reinfections after the emergence of SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Reinfection/prevention & control , Cohort Studies , Immunity, Cellular , Antibodies, Viral , Immunoglobulin G , Interferon-gamma
3.
Euro Surveill ; 28(13)2023 03.
Article in English | MEDLINE | ID: covidwho-2285507

ABSTRACT

BackgroundUnderstanding the epidemiology of reinfections is crucial for SARS-CoV-2 control over a long period.AimTo evaluate the risk of SARS-CoV-2 reinfection by vaccination status, predominant variant and time after first infection.MethodsWe conducted a cohort study including all residents in the Reggio Emilia province on 31 December 2019, followed up until 28 February 2022 for SARS-CoV-2 first infection and reinfection after 90 days. Cox models were used to compare risk of first infection vs reinfection, adjusting for age, sex, vaccine doses and comorbidities.ResultsThe cohort included 538,516 residents, 121,154 with first SARS-CoV-2 infections and 3,739 reinfections, most in the Omicron BA.1 period. In the pre-Omicron period, three doses of vaccine reduced risk of reinfection by 89% (95% CI: 87-90), prior infection reduced risk by 90% (95% CI: 88-91), while two doses and infection reduced risk by 98% (95% CI: 96-99). In the Omicron BA.1 period, protection estimates were 53% (95% CI: 52-55), 9% (95% CI: 4-14) and 76% (95% CI: 74-77). Before Omicron, protection from reinfection remained above 80% for up to 15 months; with Omicron BA.1, protection decreased from 71% (95% CI: 65-76) at 5 months to 21% (95% CI: 10-30) at 22 months from the first infection. Omicron BA.1 reinfections showed 48% (95% CI: 10-57) lower risk of severe disease than first infections.ConclusionsNatural immunity acquired with previous variants showed low protection against Omicron BA.1. Combined vaccination and natural immunity seems to be more protective against reinfection than either alone. Vaccination of people with prior infection reduced the risk of severe disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , Reinfection/epidemiology , Reinfection/prevention & control , Italy/epidemiology , Vaccination
4.
Lancet ; 401(10379): 833-842, 2023 03 11.
Article in English | MEDLINE | ID: covidwho-2245449

ABSTRACT

BACKGROUND: Understanding the level and characteristics of protection from past SARS-CoV-2 infection against subsequent re-infection, symptomatic COVID-19 disease, and severe disease is essential for predicting future potential disease burden, for designing policies that restrict travel or access to venues where there is a high risk of transmission, and for informing choices about when to receive vaccine doses. We aimed to systematically synthesise studies to estimate protection from past infection by variant, and where data allow, by time since infection. METHODS: In this systematic review and meta-analysis, we identified, reviewed, and extracted from the scientific literature retrospective and prospective cohort studies and test-negative case-control studies published from inception up to Sept 31, 2022, that estimated the reduction in risk of COVID-19 among individuals with a past SARS-CoV-2 infection in comparison to those without a previous infection. We meta-analysed the effectiveness of past infection by outcome (infection, symptomatic disease, and severe disease), variant, and time since infection. We ran a Bayesian meta-regression to estimate the pooled estimates of protection. Risk-of-bias assessment was evaluated using the National Institutes of Health quality-assessment tools. The systematic review was PRISMA compliant and was registered with PROSPERO (number CRD42022303850). FINDINGS: We identified a total of 65 studies from 19 different countries. Our meta-analyses showed that protection from past infection and any symptomatic disease was high for ancestral, alpha, beta, and delta variants, but was substantially lower for the omicron BA.1 variant. Pooled effectiveness against re-infection by the omicron BA.1 variant was 45·3% (95% uncertainty interval [UI] 17·3-76·1) and 44·0% (26·5-65·0) against omicron BA.1 symptomatic disease. Mean pooled effectiveness was greater than 78% against severe disease (hospitalisation and death) for all variants, including omicron BA.1. Protection from re-infection from ancestral, alpha, and delta variants declined over time but remained at 78·6% (49·8-93·6) at 40 weeks. Protection against re-infection by the omicron BA.1 variant declined more rapidly and was estimated at 36·1% (24·4-51·3) at 40 weeks. On the other hand, protection against severe disease remained high for all variants, with 90·2% (69·7-97·5) for ancestral, alpha, and delta variants, and 88·9% (84·7-90·9) for omicron BA.1 at 40 weeks. INTERPRETATION: Protection from past infection against re-infection from pre-omicron variants was very high and remained high even after 40 weeks. Protection was substantially lower for the omicron BA.1 variant and declined more rapidly over time than protection against previous variants. Protection from severe disease was high for all variants. The immunity conferred by past infection should be weighed alongside protection from vaccination when assessing future disease burden from COVID-19, providing guidance on when individuals should be vaccinated, and designing policies that mandate vaccination for workers or restrict access, on the basis of immune status, to settings where the risk of transmission is high, such as travel and high-occupancy indoor settings. FUNDING: Bill & Melinda Gates Foundation, J Stanton, T Gillespie, and J and E Nordstrom.


Subject(s)
COVID-19 , United States , Humans , Bayes Theorem , COVID-19/prevention & control , Prospective Studies , Reinfection/epidemiology , Reinfection/prevention & control , Retrospective Studies , SARS-CoV-2
7.
Lancet Infect Dis ; 23(5): 556-567, 2023 05.
Article in English | MEDLINE | ID: covidwho-2184728

ABSTRACT

BACKGROUND: The global surge in the omicron (B.1.1.529) variant has resulted in many individuals with hybrid immunity (immunity developed through a combination of SARS-CoV-2 infection and vaccination). We aimed to systematically review the magnitude and duration of the protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against infection and severe disease caused by the omicron variant. METHODS: For this systematic review and meta-regression, we searched for cohort, cross-sectional, and case-control studies in MEDLINE, Embase, Web of Science, ClinicalTrials.gov, the Cochrane Central Register of Controlled Trials, the WHO COVID-19 database, and Europe PubMed Central from Jan 1, 2020, to June 1, 2022, using keywords related to SARS-CoV-2, reinfection, protective effectiveness, previous infection, presence of antibodies, and hybrid immunity. The main outcomes were the protective effectiveness against reinfection and against hospital admission or severe disease of hybrid immunity, hybrid immunity relative to previous infection alone, hybrid immunity relative to previous vaccination alone, and hybrid immunity relative to hybrid immunity with fewer vaccine doses. Risk of bias was assessed with the Risk of Bias In Non-Randomized Studies of Interventions Tool. We used log-odds random-effects meta-regression to estimate the magnitude of protection at 1-month intervals. This study was registered with PROSPERO (CRD42022318605). FINDINGS: 11 studies reporting the protective effectiveness of previous SARS-CoV-2 infection and 15 studies reporting the protective effectiveness of hybrid immunity were included. For previous infection, there were 97 estimates (27 with a moderate risk of bias and 70 with a serious risk of bias). The effectiveness of previous infection against hospital admission or severe disease was 74·6% (95% CI 63·1-83·5) at 12 months. The effectiveness of previous infection against reinfection waned to 24·7% (95% CI 16·4-35·5) at 12 months. For hybrid immunity, there were 153 estimates (78 with a moderate risk of bias and 75 with a serious risk of bias). The effectiveness of hybrid immunity against hospital admission or severe disease was 97·4% (95% CI 91·4-99·2) at 12 months with primary series vaccination and 95·3% (81·9-98·9) at 6 months with the first booster vaccination after the most recent infection or vaccination. Against reinfection, the effectiveness of hybrid immunity following primary series vaccination waned to 41·8% (95% CI 31·5-52·8) at 12 months, while the effectiveness of hybrid immunity following first booster vaccination waned to 46·5% (36·0-57·3) at 6 months. INTERPRETATION: All estimates of protection waned within months against reinfection but remained high and sustained for hospital admission or severe disease. Individuals with hybrid immunity had the highest magnitude and durability of protection, and as a result might be able to extend the period before booster vaccinations are needed compared to individuals who have never been infected. FUNDING: WHO COVID-19 Solidarity Response Fund and the Coalition for Epidemic Preparedness Innovations.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Cross-Sectional Studies , Reinfection/prevention & control , Adaptive Immunity
8.
PLoS Med ; 19(11): e1004037, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2140363

ABSTRACT

BACKGROUND: Individuals with a prior Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection have a moderate to high degree of protection against reinfection, though seemingly less so when the Omicron variant of SARS-CoV-2 started to circulate. The aim of this study was to evaluate the vaccine effectiveness (VE) against SARS-CoV-2 reinfection, Coronavirus Disease 2019 (COVID-19)-related hospitalization, and COVID-19-related death, in individuals with prior SARS-CoV-2 infection, and to assess the effect of time since vaccination during periods with different dominant SARS-CoV-2 variants. METHODS AND FINDINGS: This study used a nationwide cohort design including all individuals with a confirmed SARS-CoV-2 infection, who were alive, and residing in Denmark between 1 January 2020 and 31 January 2022. Using Danish nationwide registries, we obtained information on SARS-CoV-2 infections, COVID-19 vaccination, age, sex, comorbidity, staying at hospital, and country of origin. The study population included were individuals with prior SARS-CoV-2 infection. Estimates of VE against SARS-CoV-2 reinfection with 95% confidence intervals (CIs) were calculated using a Poisson regression model and adjusted for age, sex, country of origin, comorbidity, staying at hospital, calendar time, and test incidence using a Cox regression model. The VE estimates were calculated separately for three periods with different dominant SARS-CoV-2 variants (Alpha (B.1.1.7), Delta (B.1.617.2), or Omicron (B.1.1.529)) and by time since vaccination using unvaccinated as the reference. In total, 148,527 person-years and 44,192 SARS-CoV-2 infections were included for the analysis regarding reinfections. The study population comprised of 209,814 individuals infected before or during the Alpha period, 292,978 before or during the Delta period, and 245,530 before or during the Omicron period. Of these, 40,281 individuals had completed their primary vaccination series during the Alpha period (19.2%), 190,026 during the Delta period (64.9%), and 158,563 during the Omicron period (64.6%). VE against reinfection following any COVID-19 vaccine type administered in Denmark, peaked at 71% (95% CI: -Inf to 100%) at 104 days or more after vaccination during the Alpha period, 94% (95% CI: 92% to 96%) 14 to 43 days after vaccination during the Delta period, and 60% (95% CI: 58% to 62%) 14 to 43 days after vaccination during the Omicron period. Waning immunity following vaccination was observed and was most pronounced during the Omicron period. Due to too few events, it was not possible to estimate VE for hospitalization and death. Study limitations include potentially undetected reinfections, differences in health-seeking behavior, or risk behavior between the compared groups. CONCLUSIONS: This study shows that in previously infected individuals, completing a primary vaccination series was associated with a significant protection against SARS-CoV-2 reinfection compared with no vaccination. Even though vaccination seems to protect to a lesser degree against reinfection with the Omicron variant, these findings are of public health relevance as they show that previously infected individuals still benefit from COVID-19 vaccination in all three variant periods.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , Reinfection/epidemiology , Reinfection/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Vaccine Efficacy , Denmark/epidemiology
9.
Viruses ; 14(12)2022 11 30.
Article in English | MEDLINE | ID: covidwho-2143726

ABSTRACT

Objective: To evaluate the incidence of primary and recurrent COVID-19 infections in healthcare workers (HCWs) routinely screened for SARS-CoV-2 by nasopharyngeal swabs during the Omicron wave. Design: Dynamic Cohort study of HCWs (N = 7723) of the University Health Agency Giuliano Isontina (ASUGI), covering health services of the provinces of Trieste and Gorizia (Northeast Italy). Cox proportional hazard model was employed to estimate the risk of primary as well as recurrent SARS-CoV-2 infection from 1 December 2021 through 31 May 2022, adjusting for a number of confounding factors. Results: By 1 December 2021, 46.8% HCWs of ASUGI had received the booster, 37.2% were immunized only with two doses of COVID-19 vaccines, 6.0% only with one dose and 10.0% were unvaccinated. During 1 March 2020-31 May 2022, 3571 primary against 406 SARS-CoV-2 recurrent infections were counted among HCWs of ASUGI, 59.7% (=2130/3571) versus 95.1% (=386/406) of which occurring from 1 December 2021 through 31 May 2022, respectively. All HCWs infected by SARS-CoV-2 during 1 December 2021 through 31 May 2022 presented mild flu-like disease. Compared to staff working in administrative services, the risk of primary as well as recurrent SARS-CoV-2 infection increased in HCWs with patient-facing clinical tasks (especially nurses and other categories of HCWs) and in all clinical wards but COVID-19 units and community health services. Regardless of the number of swab tests performed during the study period, primary infections were less likely in HCWs immunized with one dose of COVID-19 vaccine. By contrast, the risk of SARS-CoV-2 re-infection was significantly lower in HCWs immunized with three doses (aHR = 0.58; 95%CI: 0.41; 0.80). During the study period, vaccine effectiveness (VE = 1-aHR) of the booster dose declined to 42% against re-infections, vanishing against primary SARS-CoV-2 infections. Conclusions: Though generally mild, SARS-CoV-2 infections and re-infections surged during the Omicron transmission period. Compared to unvaccinated colleagues, the risk of primary SARS-CoV-2 infection was significantly lower in HCWs immunized just with one dose of COVID-19 vaccines. By Italian law, HCWs immunized only with one dose were either suspended or re-assigned to job tasks not entailing patient facing contact; hence, while sharing the same biological risk of unvaccinated colleagues, they arguably had a higher level of protection against COVID-19 infection. By contrast, SARS-CoV-2 re-infections were less likely in HCWs vaccinated with three doses, suggesting that hybrid humoral immunity by vaccination combined with natural infection provided a higher level of protection than vaccination only. In this stage of the pandemic, where SARS-CoV-2 is more infectious yet much less pathogenic, health protection measures in healthcare premises at higher biological risk seem the rational approach to control the transmission of the virus.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Reinfection/epidemiology , Reinfection/prevention & control , Vaccine Efficacy , SARS-CoV-2 , Cohort Studies , Health Personnel , Italy/epidemiology
10.
N Engl J Med ; 387(19): 1770-1782, 2022 11 10.
Article in English | MEDLINE | ID: covidwho-2087395

ABSTRACT

BACKGROUND: Information regarding the protection conferred by vaccination and previous infection against infection with the B.1.1.529 (omicron) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is limited. METHODS: We evaluated the protection conferred by mRNA vaccines and previous infection against infection with the omicron variant in two high-risk populations: residents and staff in the California state prison system. We used a retrospective cohort design to analyze the risk of infection during the omicron wave using data collected from December 24, 2021, through April 14, 2022. Weighted Cox models were used to compare the effectiveness (measured as 1 minus the hazard ratio) of vaccination and previous infection across combinations of vaccination history (stratified according to the number of mRNA doses received) and infection history (none or infection before or during the period of B.1.617.2 [delta]-variant predominance). A secondary analysis used a rolling matched-cohort design to evaluate the effectiveness of three vaccine doses as compared with two doses. RESULTS: Among 59,794 residents and 16,572 staff, the estimated effectiveness of previous infection against omicron infection among unvaccinated persons who had been infected before or during the period of delta predominance ranged from 16.3% (95% confidence interval [CI], 8.1 to 23.7) to 48.9% (95% CI, 41.6 to 55.3). Depending on previous infection status, the estimated effectiveness of vaccination (relative to being unvaccinated and without previous documented infection) ranged from 18.6% (95% CI, 7.7 to 28.1) to 83.2% (95% CI, 77.7 to 87.4) with two vaccine doses and from 40.9% (95% CI, 31.9 to 48.7) to 87.9% (95% CI, 76.0 to 93.9) with three vaccine doses. Incremental effectiveness estimates of a third (booster) dose (relative to two doses) ranged from 25.0% (95% CI, 16.6 to 32.5) to 57.9% (95% CI, 48.4 to 65.7) among persons who either had not had previous documented infection or had been infected before the period of delta predominance. CONCLUSIONS: Our findings in two high-risk populations suggest that mRNA vaccination and previous infection were effective against omicron infection, with lower estimates among those infected before the period of delta predominance. Three vaccine doses offered significantly more protection than two doses, including among previously infected persons.


Subject(s)
COVID-19 Vaccines , COVID-19 , Prisons , Vaccination , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Prisons/statistics & numerical data , Retrospective Studies , SARS-CoV-2 , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/therapeutic use , California/epidemiology , Prisoners/statistics & numerical data , Police/statistics & numerical data , Vaccine Efficacy/statistics & numerical data , Reinfection/epidemiology , Reinfection/prevention & control , Immunization, Secondary/statistics & numerical data
12.
JAMA Netw Open ; 5(10): e2236670, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2074855

ABSTRACT

Importance: The Omicron variant is phylogenetically and antigenically distinct from earlier SARS-CoV-2 variants and the original vaccine strain. Protection conferred by prior SARS-CoV-2 infection against Omicron reinfection, with and without vaccination, requires quantification. Objective: To estimate the protection against Omicron reinfection and hospitalization conferred by prior heterologous non-Omicron SARS-CoV-2 infection and/or up to 3 doses of an ancestral, Wuhan-like messenger RNA (mRNA) vaccine. Design, Setting, and Participants: This test-negative, population-based case-control study was conducted between December 26, 2021, and March 12, 2022, and included community-dwelling individuals aged 12 years or older who were tested for SARS-CoV-2 infection in the province of Quebec, Canada. Exposures: Prior laboratory-confirmed SARS-CoV-2 infection with or without mRNA vaccination. Main Outcomes and Measures: The main outcome was laboratory-confirmed SARS-CoV-2 reinfection and associated hospitalization, presumed to be associated with the Omicron variant according to genomic surveillance. The odds of prior infection with or without vaccination were compared for case participants with Omicron infection and associated hospitalizations vs test-negative control participants. Estimated protection was derived as 1 - the odds ratio, adjusted for age, sex, testing indication, and epidemiologic week. Analyses were stratified by severity and time since last non-Omicron infection or vaccine dose. Results: This study included 696 439 individuals (224 007 case participants and 472 432 control participants); 62.2% and 63.9% were female and 87.4% and 75.5% were aged 18 to 69 years, respectively. Prior non-Omicron SARS-CoV-2 infection was detected for 9505 case participants (4.2%) and 29 712 control participants (6.3%). Among nonvaccinated individuals, prior non-Omicron infection was associated with a 44% reduction (95% CI, 38%-48%) in Omicron reinfection risk, which decreased from 66% (95% CI, 57%-73%) at 3 to 5 months to 35% (95% CI, 21%-47%) at 9 to 11 months postinfection and was below 30% thereafter. The more severe the prior infection, the greater the risk reduction. Estimated protection (95% CI) against Omicron infection was consistently significantly higher among vaccinated individuals with prior infection compared with vaccinated infection-naive individuals, with 65% (63%-67%) vs 20% (16%-24%) for 1 dose, 68% (67%-70%) vs 42% (41%-44%) for 2 doses, and 83% (81%-84%) vs 73% (72%-73%) for 3 doses. For individuals with prior infection, estimated protection (95% CI) against Omicron-associated hospitalization was 81% (66%-89%) and increased to 86% (77%-99%) with 1, 94% (91%-96%) with 2, and 97% (94%-99%) with 3 mRNA vaccine doses, without signs of waning. Conclusions and Relevance: The findings of this study suggest that vaccination with 2 or 3 mRNA vaccine doses among individuals with prior heterologous SARS-CoV-2 infection provided the greatest protection against Omicron-associated hospitalization. In the context of program goals to prevent severe outcomes and preserve health care system capacity, a third mRNA vaccine dose may add limited protection in twice-vaccinated individuals with prior SARS-CoV-2 infection.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Case-Control Studies , Female , Humans , Male , Quebec/epidemiology , RNA, Messenger , Reinfection/epidemiology , Reinfection/prevention & control , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
16.
J Infect ; 85(5): 545-556, 2022 11.
Article in English | MEDLINE | ID: covidwho-2007862

ABSTRACT

OBJECTIVES: To investigate serological differences between SARS-CoV-2 reinfection cases and contemporary controls, to identify antibody correlates of protection against reinfection. METHODS: We performed a case-control study, comparing reinfection cases with singly infected individuals pre-vaccination, matched by gender, age, region and timing of first infection. Serum samples were tested for anti-SARS-CoV-2 spike (anti-S), anti-SARS-CoV-2 nucleocapsid (anti-N), live virus microneutralisation (LV-N) and pseudovirus microneutralisation (PV-N). Results were analysed using fixed effect linear regression and fitted into conditional logistic regression models. RESULTS: We identified 23 cases and 92 controls. First infections occurred before November 2020; reinfections occurred before February 2021, pre-vaccination. Anti-S levels, LV-N and PV-N titres were significantly lower among cases; no difference was found for anti-N levels. Increasing anti-S levels were associated with reduced risk of reinfection (OR 0·63, CI 0·47-0·85), but no association for anti-N levels (OR 0·88, CI 0·73-1·05). Titres >40 were correlated with protection against reinfection for LV-N Wuhan (OR 0·02, CI 0·001-0·31) and LV-N Alpha (OR 0·07, CI 0·009-0·62). For PV-N, titres >100 were associated with protection against Wuhan (OR 0·14, CI 0·03-0·64) and Alpha (0·06, CI 0·008-0·40). CONCLUSIONS: Before vaccination, protection against SARS-CoV-2 reinfection was directly correlated with anti-S levels, PV-N and LV-N titres, but not with anti-N levels. Detectable LV-N titres were sufficient for protection, whilst PV-N titres >100 were required for a protective effect. TRIAL REGISTRATION NUMBER: ISRCTN11041050.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/prevention & control , Case-Control Studies , Humans , Reinfection/prevention & control , Vaccination
17.
Ann Intern Med ; 175(5): 674-681, 2022 05.
Article in English | MEDLINE | ID: covidwho-1975317

ABSTRACT

BACKGROUND: There is insufficient evidence regarding the magnitude and durability of protection conferred by a combined effect of naturally acquired immunity after SARS-CoV-2 infection and vaccine-induced immunity. OBJECTIVE: To compare the incidence rate of SARS-CoV-2 reinfection in previously infected persons to that of previously infected persons who subsequently received a single dose of BNT162b2 messenger RNA vaccine. DESIGN: A retrospective cohort study emulating a randomized controlled target trial through a series of nested trials. SETTING: Nationally centralized database of Maccabi Healthcare Services, Israel. PARTICIPANTS: Persons with documented SARS-CoV-2 infection who did not receive subsequent SARS-CoV-2 vaccination were compared with persons with documented SARS-CoV-2 infection who received a single dose of the BNT162b2 vaccine at least 3 months after infection. INTERVENTION: Forty-one randomized controlled trials were emulated, in which 107 413 Maccabi Healthcare Services' members aged 16 years and older were eligible for at least 1 trial. MEASUREMENTS: SARS-CoV-2-related outcomes of infection, symptomatic disease, hospitalization, and death, between 2 March and 13 December 2021. RESULTS: A statistically significant decreased risk (hazard ratio, 0.18 [95% CI, 0.15 to 0.20]) for reinfection was found among persons who were previously infected and then vaccinated versus those who were previously infected but remained unvaccinated. In addition, there was a decreased risk for symptomatic disease (hazard ratio, 0.24 [CI, 0.20 to 0.29]) among previously infected and vaccinated persons compared with those who were not vaccinated after infection. No COVID-19-related mortality cases were found. LIMITATION: Hybrid protection against non-Delta variants could not be inferred. CONCLUSION: Persons previously infected with SARS-CoV-2 gained additional protection against reinfection and COVID-19 from a subsequent single dose of the BNT162b2 vaccine. Nonetheless, even without a subsequent vaccination, reinfection appeared relatively rare. PRIMARY FUNDING SOURCE: None.


Subject(s)
COVID-19 , Vaccines , Adaptive Immunity , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Incidence , Reinfection/epidemiology , Reinfection/prevention & control , Retrospective Studies , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
18.
Front Immunol ; 13: 914167, 2022.
Article in English | MEDLINE | ID: covidwho-1969021

ABSTRACT

Our understanding of the immune responses that follow SARS-CoV-2 infection and vaccination has progressed considerably since the COVID-19 pandemic was first declared on the 11th of March in 2020. Recovery from infection is associated with the development of protective immune responses, although over time these become less effective against new emerging SARS-CoV-2 variants. Consequently, reinfection with SARS-CoV-2 variants is not infrequent and has contributed to the ongoing pandemic. COVID-19 vaccines have had a tremendous impact on reducing infection and particularly the number of deaths associated with SARS-CoV-2 infection. However, waning of vaccine induced immunity plus the emergence of new variants has necessitated the use of boosters to maintain the benefits of vaccination in reducing COVID-19 associated deaths. Boosting is also beneficial for individuals who have recovered from COVID-19 and developed natural immunity, also enhancing responses immune responses to SARS-CoV-2 variants. This review summarizes our understanding of the immune responses that follow SARS-CoV-2 infection and vaccination, the risks of reinfection with emerging variants and the very important protective role vaccine boosting plays in both vaccinated and previously infected individuals.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity , Pandemics , RNA, Viral , Reinfection/prevention & control , SARS-CoV-2
19.
JAMA Netw Open ; 5(7): e2223917, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1958651

ABSTRACT

Importance: The benefit of vaccination for preventing reinfection among individuals who have been previously infected with SARS-CoV-2 is largely unknown. Objective: To obtain population-based estimates of the probability of SARS-CoV-2 reinfection and the effectiveness associated with vaccination after recovery from COVID-19. Design, Setting, and Participants: This cohort study used Rhode Island statewide surveillance data from March 1, 2020, to December 9, 2021, on COVID-19 vaccinations, laboratory-confirmed cases, hospitalizations, and fatalities to conduct a population-based, retrospective study during periods when wild type, Alpha, and Delta strains of SARS-CoV-2 were predominant. Participants included Rhode Island residents aged 12 years and older who were previously diagnosed with COVID-19 and unvaccinated at the time of first infection, stratified into 3 subpopulations: long-term congregate care (LTCC) residents, LTCC employees, and the general population (ie, individuals not associated with congregate settings). Data were analyzed from October 2021 to January 2022. Exposures: Completion of the primary vaccination series, defined as 14 days after the second dose of an mRNA vaccine or 1 dose of vector virus vaccine. Main Outcomes and Measures: The main outcome was SARS-CoV-2 reinfection, defined as a laboratory-confirmed positive result on a polymerase chain reaction (PCR) or antigen test at least 90 days after the first laboratory-confirmed positive result on a PCR or antigen test. Results: Overall, 3124 LTCC residents (median [IQR] age, 81 [71-89]; 1675 [53.6%] females), 2877 LTCC employees (median [IQR] age, 41 [30-53]; 2186 [76.0%] females), and 94 516 members of the general population (median [IQR] age, 35 [24-52] years; 45 030 [47.6%] females) met eligibility criteria. Probability of reinfection at 9 months for those who remained unvaccinated after recovery from prior COVID-19 was 13.0% (95% CI, 12.0%-14.0%) among LTCC residents, 10.0% (95% CI, 8.8%-11.5%) among LTCC employees, and 1.9% (95% CI, 1.8%-2.0%) among the general population. Completion of the primary vaccination series after infection was associated with 49% (95% CI, 27%-65%) protection among LTCC residents, 47% (95% CI, 19%-65%) protection among LTCC employees, and 62% (95% CI, 56%-68%) protection in the general population against reinfection, adjusting for potential sociodemographic and clinical confounders and temporal variation in infection rates. Conclusions and Relevance: These findings suggest that risk of SARS-CoV-2 reinfection after recovery from COVID-19 was relatively high among individuals who remained unvaccinated. Vaccination after recovery from COVID-19 was associated with reducing risk of reinfection by approximately half.


Subject(s)
COVID-19 , Reinfection , Adult , Aged, 80 and over , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , Female , Humans , Male , Reinfection/epidemiology , Reinfection/prevention & control , Retrospective Studies , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
20.
N Engl J Med ; 386(23): 2201-2212, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1864786

ABSTRACT

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provides natural immunity against reinfection. Recent studies have shown waning of the immunity provided by the BNT162b2 vaccine. The time course of natural and hybrid immunity is unknown. METHODS: Using the Israeli Ministry of Health database, we extracted data for August and September 2021, when the B.1.617.2 (delta) variant was predominant, on all persons who had been previously infected with SARS-CoV-2 or who had received coronavirus 2019 vaccine. We used Poisson regression with adjustment for confounding factors to compare the rates of infection as a function of time since the last immunity-conferring event. RESULTS: The number of cases of SARS-CoV-2 infection per 100,000 person-days at risk (adjusted rate) increased with the time that had elapsed since vaccination with BNT162b2 or since previous infection. Among unvaccinated persons who had recovered from infection, this rate increased from 10.5 among those who had been infected 4 to less than 6 months previously to 30.2 among those who had been infected 1 year or more previously. Among persons who had received a single dose of vaccine after previous infection, the adjusted rate was low (3.7) among those who had been vaccinated less than 2 months previously but increased to 11.6 among those who had been vaccinated at least 6 months previously. Among previously uninfected persons who had received two doses of vaccine, the adjusted rate increased from 21.1 among those who had been vaccinated less than 2 months previously to 88.9 among those who had been vaccinated at least 6 months previously. CONCLUSIONS: Among persons who had been previously infected with SARS-CoV-2 (regardless of whether they had received any dose of vaccine or whether they had received one dose before or after infection), protection against reinfection decreased as the time increased since the last immunity-conferring event; however, this protection was higher than that conferred after the same time had elapsed since receipt of a second dose of vaccine among previously uninfected persons. A single dose of vaccine after infection reinforced protection against reinfection.


Subject(s)
COVID-19 , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/epidemiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Humans , Immunity, Innate , Reinfection/immunology , Reinfection/prevention & control , SARS-CoV-2 , Time Factors , Viral Vaccines/immunology , Viral Vaccines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL